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Introduction
Flavin-containing monooxygenases (FMOs) constitute a family 
of microsomal enzymes catalyzing the oxidation of nucleophilic 
heteroatom-containing xenobiotics.1 They oxygenate the sulfur or 
nitrogen atoms in chemicals with soft nucleophiles.2 FMOs are in-
volved in the pathogenic process of trimethylaminuria, atheroscle-
rosis, cardiovascular disease, diabetes, and metabolic disorders.3–6 
In recent years, the involvement of FMOs in neurodegeneration 
and aging has emerged,7 but the underlying mechanisms have not 
been elucidated. In this review, we summarize the expression and 
localization of FMOs in the brain, the endogenous chemicals and 
xenobiotics metabolized by FMOs in the brain, and the conse-
quences of FMO deficiency.

FMO
FMO (EC 1.14.13.8) was first described by Ziegler et al.8,9 Hu-
mans possess five functional FMO genes, designated FMO1–5. 
FMO1–4 are clustered on chromosome 1 q24.3, and FMO5 is lo-

cated at 1q21.1.10,11 Numerous allelic variants, including approxi-
mately 20 of human FMO1, have been reported.12

Mammalian FMOs are NADPH- and oxygen-dependent mi-
crosomal monooxygenases that usually metabolize nitrogen- and 
sulfur-containing compounds.1,13,14 The catalytic mechanism in-
volves a first step in which FAD undergoes a 2-electron reduction 
by NADPH. The reduced flavin then reacts rapidly with molecular 
oxygen to form peroxyflavin. This nucleophilic attack by the sub-
strate on FADOOH results in the transfer of one atom of molecular 
oxygen to the substrate with another contributing to the formation 
of water.

Trimethylaminuria is a currently confirmed rare inherited meta-
bolic disorder associated with abnormal amounts of dietary-de-
rived trimethylamine and is caused by the mutations in FMO3.15,16

Emerging roles of FMOs in neurodegeneration and aging

Amyotrophic lateral sclerosis
Association between FMOs and amyotrophic lateral sclerosis 
(ALS) has been widely reported although some reports are con-
tradictory. Malaspina et al.17 reported an 80% reduction in FMO1 
mRNA levels in the spinal cord of sporadic ALS patients. In con-
trast, Gagliardi et al.18 observed greater FMO1 expression in the 
spinal cord and brain stem of ALS patients compared with that in 
healthy controls. Gagliardi et al.19 found that the mRNA levels 
of all FMOs except for FMO3 were up-regulated in the brain of 
SOD1-mutated (G93A) ALS mice compared with control mice, 
with the highest increase in FMO1 in the spinal cord and brain-
stem. Cereda et al.12 found a significantly elevated frequency of 
FMO1 single nucleotide polymorphisms in female sporadic ALS 
patients, further indicating that specific allelic variants of FMO1 
might be associated with ALS development.
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Parkinsonism
Accumulating evidence indicates a relationship between FMOs 
and parkinsonism. The FMO gene cluster is associated with the 
volume of the lentiform nucleus, which is a physiological marker 
associated with Parkinson’s disease (PD). Nicotine can be N-oxi-
dized by FMOs and can reduce oxidative stress and neuro-inflam-
mation in the brain and improve synaptic plasticity and neuronal 
survival of dopaminergic (DA) neurons, thereby benefiting PD pa-
tients.20,21 MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) 
is a neurotoxin and its toxic metabolite 1-methyl-4-phenylpyridin-
ium (MPP+) can kill DA neurons and elicit parkinsonism. MPTP 
can be deactivated by FMOs into a harmless metabolite in the brain 
(discussed in detail in the section, Endogenous Substances and Xe-
nobiotics Oxygenated by FMOs in the Brain). In addition, we have 
shown that FMO1 deficiency promotes neuroinflammation that 
affects the survival of DA neurons in mice. The levels of FMO1 
mRNA transcripts decreased in a rotenone model of parkinsonism, 
accompanied by decreasing levels of parkin mRNA transcripts and 
increased Caspase-3 activation.22,23

Aging
FMO1–5 have all been reported to be transcriptionally activated in 
classical mouse models of longevity, including calorie restriction, 
growth hormone/insulin-like growth factor 1 signaling disruption, 
and rapamycin treatment.7 The expression of FMO3 is up-regulated 
in the liver of a variety of longevity mouse models.24–27 However, 
up-regulation of FMO3 expression in hepatocytes of murine models 
has recently been shown to prevent or reverse hepatic aging. This 
mimicked calorie restriction and the associated mechanism is proba-
bly attributed to the promotion of autophagy.28 Furthermore, feeding 
with a normal diet significantly down-regulated FMO1 mRNA tran-
scripts in mice in an age-dependent manner,29 indicating that reduced 
FMO1 expression contributes to the progression of aging. However, 
the specific mechanism underlying its role is still unknown.

The expression and localization of FMOs in the brain
The mRNAs of mammalian FMO isoforms can be detected in dif-
ferent organs, including the liver, kidney, lung, and brain.30 FMOs 
are active in human, rat, mouse, rabbit, hamster, and guinea pig 
brains.31–37 Here we mainly review FMO activity in mouse and 
human brains.

Mouse brain
In an adult mouse brain, FMO1 and 5 are the most abundant FMOs, 
as detected using isoform-specific antisense RNA probes.30 FMO1 
mRNA transcripts are observed in neurons of the cerebrum and the 
choroid plexus while FMO5 mRNA transcripts are only detected 
in neurons of the cerebrum. FMO expression in astrocytes remains 
controversial. Janmohamed et al.30 reported no detectable FMO 
activity in vivo, while Di Monte et al.38 detected FMO activity in 
primary cultures of mouse astrocytes.

In the neonatal brain, the most abundant FMO mRNA tran-
scripts are FMO1, and their level drops by approximately 80% at 
8 weeks of age. The levels of FMO5 mRNA transcripts are 70% 
of FMO1 in neonates and are similar to that of FMO1 in 3-, 5- and 
8-week-old mouse brains. FMO2, 3, and 4 mRNA transcripts are 
present at relatively low levels; approximately <1 molecule/cell.

Human brain
Zhang et al.34 examined the developmental expression of FMOs in 

60 human brain samples detecting all FMO1–5 mRNA transcripts. 
FMO mRNA levels in the brain were much lower than that in other 
tissues, about less than 1% compared with the most abundant tis-
sues observed (i.e., FMO1 in the kidney, FMO2 in the lung, and 
FMO3 and 5 in the liver). FMO1 is the only subtype to be down-
regulated in adult human brains, while the amounts of other FMO 
mRNA transcripts in human brains remain similar among different 
age groups. Few studies have reported the expression of FMOs in 
human brains. Cashman et al.39 found that FMO3 was selectively 
expressed in the substantia nigra of human brains by immunohis-
tochemistry.

Endogenous substances and xenobiotics oxygenated by FMOs 
in the brain

Endogenous substances
FMO catalyzes the N- and S-oxygenation of several endogenous 
substances, including phenethylamine, tyramine, amphetamine, 
and trimethylamine that can be converted by FMO in the brain 
with clinical significance.40 S-oxygenation of hypotaurine by 
FMO1 contributes to the production of taurine in the brain, which 
possesses neurotransmitter, antioxidant, and anti-inflammatory 
functions.41

Xenobiotics
FMO oxidizes particular xenobiotics in the brain. Nicotine, which 
is abundant in tobacco smoke and can diminish oxidative stress 
and neuroinflammation in the brain, is hydroxylated by CYP2A6 
and undergoes glucuronidation by UDP-glucuronosyl transferases 
and oxidation by FMO.21,42,43 Several psychoactive drugs, e.g. im-
ipramine, chlorpromazine, and fluoxetine, are N- or S-oxygenated 
by FMO in both rat and human brains.31,32,44 Imipramine causes 
greater sedation in wild-type animals compared with FMO1-null 
mice, probably because imipramine N-oxide is produced in the 
wild-type brain and a higher concentration of desipramine is pro-
duced in the FMO1-null brain.45

A typical xenobiotic oxidized by FMO is the pro-neurotoxin, 
MPTP, which can lead to DA neuron degeneration and parkinson-
ism in humans.46–48 MPTP in the brain is rapidly converted to the 
toxic MPP+49,50 by monoamine oxidase B51,52 or CYP (marmo-
set CYP2D6 and human CYP1A2).47,49,53 However, MPTP can 
be deactivated to 4-phenyl-1,2,3,6-tetrahydropyridine (PTP) and 
MPTP N-oxide that is non-neurotoxic, by CYP2D6 and FMO (Fig. 
1).53–55 The concentrations of MPP+ in Suncus brains after a single 
intraperitoneal administration of MPTP were markedly higher than 
that in rats, probably because of the lack of FMO activity in Suncus 
brains.56 FMO1 and 3 may contribute to this detoxification. MPTP 
N-oxygenation in human brain microsomes was consistently cata-
lyzed by human FMO1 and 3.53

What are the consequences of FMO deficiency?
Genetic deficiency of FMOs has several consequences. FMO1 
deficiency promotes neuroinflammation that affects the survival 
of DA neurons in C57BL/6N mice.23 Mice with FMO1, 2, and 4 
deficiency exhibit a lean phenotype and enhanced resting energy 
expenditure, those with FMO1 deficiency most likely underlying 
the metabolic phenotype.57 FMO3 is a target of insulin and knock-
down of FMO3 expression in insulin-resistant mice improves glu-
cose tolerance.6 Knockdown of FMO3 expression in the liver of 
low-density lipoprotein receptor-knockout mice leads to decreased 
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circulating trimethylamine N-oxide (TMAO) levels (an independ-
ent risk factor for cardiovascular disease) and atherosclerosis.4,5 
Fmo5−/− mice exhibit a lean phenotype and are resistant to age-
related changes in glucose homeostasis compared with wild-type 
mice, indicating that FMO5 is a regulator of metabolic aging.58 
Fmo5−/− mice also possess metabolic characteristics similar to 
those of germ-free mice, indicating that FMO5 is crucial for sens-
ing or responding to gut bacteria.59 However, conditional knock-
down of brain FMOs has not been reported.

Further directions
The precise roles of FMOs in pathological processes remain to be 
determined. In-depth knowledge of FMO gene expression and pro-
tein localization and identification of substrates in the brain that 
are oxidized by FMOs may help in understanding the mechanisms 
of action of FMOs and their importance in the pathogenesis of neu-
ronal degeneration and aging.

Conclusions
The potential involvement of FMOs in neurodegeneration and ag-
ing has been demonstrated in recent years. FMOs play important 
roles in metabolizing certain endogenous chemicals and xenobiot-
ics in the brain, which participate in physiological and pathological 
processes. Knowledge of the expression and localization of FMOs 
in the brain, the endogenous chemicals and xenobiotics metabo-
lized by FMOs, and the consequences of FMO deficiency can help 
us understand their involvement in neurodegeneration and aging.
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